If what you need is	then the rule to use is	and what else you need is	
The P in PvQ	vE	~Q	
The Q in PvQ	vE	~P	
The P in P&Q	&E	nothing	
The Q in P&Q	&E	nothing	
The $P \rightarrow Q$ in $P \leftrightarrow Q$	↔E	nothing	
The Q in P→Q	→E	Р	
P in P→Q	(You just can't get there from here)	Another strategy	

If what you need to build is	Then the rule to use is	and what you need is	and
P&Q	&I	Р	Q
PvQ	vl	either P or Q	(nothing)
P→Q	→I	to assume P	and deduce Q
~P	RAA	to assume P	and deduce both X and ~X (for any wff X)
P↔Q	↔I	P→Q	O→P

Symbolic logic Strategies for less simple proofs

Chapman University. PHIL300. Lecture 11. 3/8/2022. Kelvin McQueen

The road to in-class exam 2

Today: section 1.5.

Less simple proofs.

Lectures 12 (3/10): section 1.5.

Derived rules.

Lecture 13 (3/15): section 1.6.

Theorems.

Lecture 14 (3/17): revision.

Lecture 15 (3/29): in-class exam 2.

Covers sections 1.4, 1.5 and 1.6.

Truth tables versus proofs

Truth tables

- By using the five truth tables (for the five connectives), we can prove the validity of many arguments.
- But they don't give us much insight into actual reasoning, and especially, how to go about building our own logical arguments.

Proofs

- ▶ Embedded within each truth table is an *introduction* and an *elimination* rule (~ is the exception).
- These represent the foundations of logical reasoning and are used (and misused) in all arguments we see in everyday life, philosophy, science, and mathematics.

Examples: arrow and wedge elimination

Arrow-elim

- ▶ Given a conditional sentence (at line m) and another sentence that is its antecedent (at line n), conclude the consequent of the conditional.
 - (m): If I'm going to get an A in the next exam, then I must do lots of proof exercises.
 - (n): I am going to get an A in the next exam.

(conclude): I must do lots of proof exercises.

Р	\rightarrow	Q
Т	T	Т
Т	F	F
F	T	Т
F	T	F

Wedge-elim

- ▶ Given a sentence (at line *m*) that is a disjunction and another sentence (at line *n*) that is a denial of one of its disjuncts, conclude the other disjunct.
 - (m): I'm going to do lots of proof exercises or I'm going to get a mediocre grade in the next exam.
 - (n): I'm not going to getting a mediocre grade in the next exam. (conclude): I'm going to do lots of proof exercises.

Р	V	Q
T	H	Т
_	_	Ħ
F	_	Т
F	F	F

Arrow introduction

Arrow-intro

• Given a sentence (at line n) conclude a conditional having it as the consequent and whose antecedent appears in the proof as an assumption (at line m).

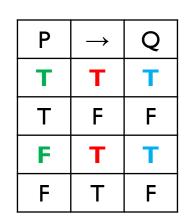
(premise): If all choices are determined, then no choices are free.

(premise): If no choices are free, then no one is responsible for what they do.

(n): [Assume for argument's sake that] all choices are determined.

(m): No one is responsible for what they do.

(conclude): If all choices are determined, then no one is responsible for what they do.



Reductio ad absurdum (RAA)

RAA

- Given both a sentence and its denial (at lines m and n), conclude the denial of any assumption appearing in the proof (at line k).
 - Here, the intuition is that if an assumption is responsible for a contradiction (a sentence and its denial both being true), that assumption must be false.
 - So, if you want to prove something (anything), assume its denial and show that the assumption leads to a contradiction.

Example: prove that there's no largest number.

```
(premise I): If there is a largest number, N, then there is no such number as N+1. (premise m): There is such a number as N+1.
```

- (k): [Assume for argument's sake that] There is a largest number, N.
- (n): There is no such number as N+1 (from premise 1 and assumption k)

(conclude): There is no largest number (since (k) led to the contradiction in m and n).

Strategies for less simple proofs

- First ask: what am I trying to prove?
 - A proof is a trip to a given destination (the conclusion) from a given starting point (the premises).
 - Your task is to discover a route, but not the route, since there are often many different ones.
- A general strategy for getting to where you want to go from where you already are is to work backwards from your destination.
 - Start with where you want to end up (the conclusion), and figure out how you could get there.
 - Keep working backwards until you find that what you need is something you know how to get from the premises.

Know how to identify main connectives

- In sentential logic there are exactly six kinds of well-formed-formula (wff). Every wff is:
 - I. Atomic (a letter all by itself), or
 - 2. a Negation (main connective: ~), or
 - 3. a Conjunction (main connective: &), or
 - 4. a Disjunction (main connective: v), or
 - 5. a Conditional (main connective: \rightarrow), or
 - 6. a Biconditional (main connective: \leftrightarrow).
- The main connective of the wff you're working with determines both the strategies for proving it and the strategies for using it in proving other things.

The direct approach

- I. Do I already have the wff that I need to prove, as a constituent part of something I already have?
- 2. If I do, how do I take that thing apart and get out the wff that I need?
 - The Elimination rules are useful here.
- 3. If I don't, then how do I build what I need?
 - The Introduction rules are useful here.

The direct approach

- I. Do I already have the wff that I need to prove, as a constituent part of something I already have?
- 2. If I do, how do I take that thing apart and get out the wff that I need?

 The Elimination rules are useful here.
- 3. If I don't, then how do I build what I need?
 - The Introduction rules are useful here.

If what you need is	then the rule to use is	and what else you need is
The P in PvQ	νE	~Q
The Q in PvQ	νE	~P
The P in P&Q	&E	nothing
The Q in P&Q	&E	nothing
The $P \rightarrow Q$ in $P \leftrightarrow Q$	↔E	nothing
The Q in P→Q	→E	Р
P in P→Q	(You just can't get there from here)	Another strategy

The direct approach

- I. Do I already have the wff that I need to prove, as a constituent part of something I already have?
- 2. If I do, how do I take that thing apart and get out the wff that I need?
 - The Elimination rules are useful here.
- 3. If I don't, then how do I build what I need?
 - -The Introduction rules are useful here.

If what you need to build is	Then the rule to use is	and what you need is	and
P&Q	&I	P	Q
PvQ	γl	either P or Q	(nothing)
P→Q	\rightarrow I	to assume P	and deduce Q
~P	RAA	to assume P	and deduce both X and ~X (for any wff X)
P↔Q	↔I	P→Q	O→P

The indirect approach

- Sometimes, the direct approach doesn't work.
 - In that case, you can always resort to assuming a denial of what you want to get, then try to get a contradiction so that you can use RAA.

```
PvPFP
(I) PvP A
```

The indirect approach

- Sometimes, the direct approach doesn't work.
 - In that case, you can always resort to assuming a denial of what you want to get, then try to get a contradiction so that you can use RAA.

```
P v P F P

I (I) P v P A

2 (2) ~P A

I,2 (3) P I,2vE

I (4) P 2,3 RAA(2)
```

Double turnstile (p28)

Comment. If a sequent has just one sentence on each side of a turnstile, a reversed turnstile may be inserted (\dashv) to represent the argument from the sentence on the right to the sentence on the left.

Example. $P \dashv \vdash P \lor P$

Comment. This example corresponds to two sequents: $P \vdash P \lor P$ and $P \lor P \vdash P$. You may read the example as saying 'P therefore P or P, and P or P therefore P'. When proving $\phi \dashv \vdash \psi$, one must give two proofs: one for $\phi \vdash \psi$ and one for $\psi \vdash \phi$.

Exercise 1.5.1 Give proofs for the following sequents, using the primitive rules of proof.

DM

 $\sim (P \& O) \dashv \vdash \sim P \lor \sim O$

S29