

Comprehension in a digital world II

Chapman University. PHIL398. Lecture 18. 4/8/2021. Kelvin J. McQueen

Reading schedule and 2nd assignment

Schedule:

- This week (week 9): excursion into comprehension:

 Can there be comprehension in a digital world?
- Next week (week 10): excursion into free will and ch16.

 Can there be free will in a digital world?

 Does augmented reality extend the mind?
- Week 11:Value in a digital world.

2nd short paper:

- Due: Friday 11.59pm April 23.
- ▶ Worth 15%.
- Write a philosophical paper on a topic covered so far (distinct from 1st short paper). A bibliography is necessary and must include at least one reference (other than the Chalmers book). 600-800 words.

Discussion board (w9) posts due 4/10

- Post I:What is the strongest reply to the Chinese room argument? Does the reply work? Explain your answer. 200-300 words.
- Post 2: Provide constructive feedback to a post on another student's thread. 150-250 words.

Assignment	Rubric Details
------------	----------------

×

Criteria Post 1 Response to prompt	Ratings			Pts
	5.0 pts Excellent The post clearly answers the prompt, demonstrates understanding of the reading, and illustrates independent thinking.	3.0 pts Adequate The post attempts to answer the prompt, demonstrates partial understanding of the reading, but lacks independent thinking.	1.0 pts Inadequate Does not provide clear answer to the prompt and does not demonstrate understanding of the reading.	5.0 pts
Post 2 Constructive feedback	5.0 pts Excellent The post responds clearly to another student's post, offers constructive ideas, and is respectful.	3.0 pts Adequate The post attempts to respond to another student's post, but lacks either constructive ideas or respectful language.	1.0 pts Inadequate Does not respond to another student's post in way that demonstrates thoughtfulness.	5.0 pt

Total Points: 10.

Recap: Searle's Chinese room

Searle imagines himself alone in a room following a program for responding to Chinese characters slipped under the door. By following the program for manipulating symbols just as a computer does, he sends appropriate strings of Chinese characters back out under the door, and this leads those outside to mistakenly suppose there is a Chinese speaker in the room.

Recap: Searle's argument

Set-up:

- Strong AI: computers really play chess intelligently and understand language.
- Weak AI: computers are merely useful in psychology, linguistics, and other areas, in part because they can simulate mental abilities.
- L: a natural language,
- Program for L: a program for conversing fluently in L.
- ▶ A computing system: any system that can run a program.

Argument:

- (I) If Strong AI is true, then there is a program for Chinese such that if any computing system runs that program, that system thereby comes to understand Chinese.
- (2) I could run a program for Chinese without thereby coming to understand Chinese.
- (3) Therefore, Strong Al is false.

Replies to the Chinese room argument

The Systems Reply

- While the person running the program does not understand, the system as a whole does.
 - **Searle**: rerun the argument after internalizing the whole system.

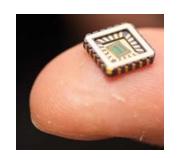
The Robot Reply

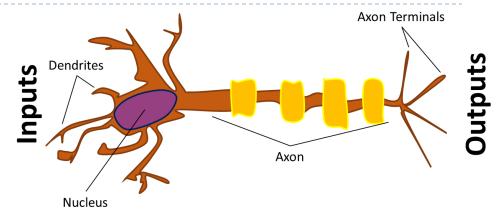
- The system will understand Chinese if it learns and uses it in an environment.
 - **Searle**: this is just more input for the person to deal with, with zero increase in understanding.

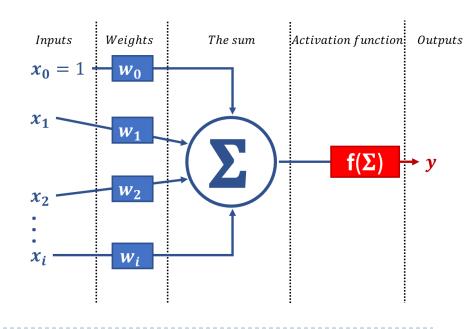
The Brain Simulator Reply

- Let the program be an artificial brain created by uploading the mind of a Chinese speaker.
 - ▶ **Searle**: let the artificial brain work via a huge set of valves and water pipes in the room. Still no understanding!

▶ The Other Minds Reply

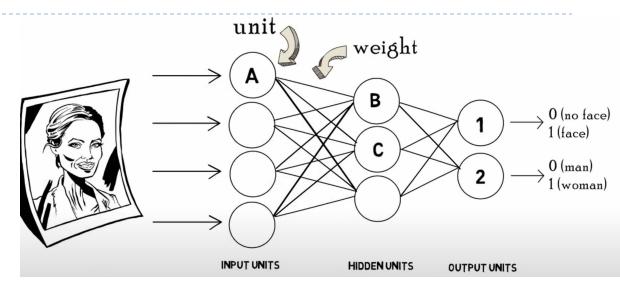

- The system passes all tests we would use to test whether other minds understand Chinese.
 - ▶ **Searle**: the argument shows that those tests are insufficient! Understanding goes beyond behavior and requires conscious intentionality.

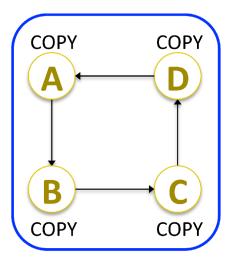

▶ The Intuition Reply

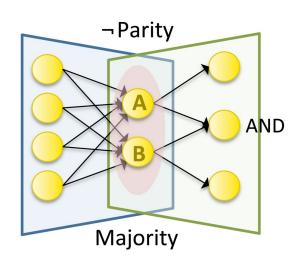

The argument is based on untutored intuition, which is not a reliable source for knowledge.

The details of gradual uploading

- Step 1: identify mindrelevant functions of neurons.
- Step 2: create a substrate independent model of those functions.
- Step 3: implement the model on a non-biological substrate.


Steps 1&2: mind-relevant functions


Cognition (leading to intelligent behavior)


 Facial recognition systems (for e.g.) are based on artificial neural networks.

Consciousness

A leading theory of consciousness (integrated information theory) states that <u>feedback networks</u> or networks with <u>overlapping inputs and outputs</u>, are necessary and sufficient for consciousness.

OPEN

Optimal solid state neurons

Kamal Abu-Hassan ¹, Joseph D. Taylor ¹, Paul G. Morris ^{1,2}, Elisa Donati ³, Zuner A. Giacomo Indiveri ³, Julian F.R. Paton ^{2,4} & Alain Nogaret ^{1*}

Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solidstate neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.

Breakout rooms

What is the strongest reply to the Chinese room argument and why?